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A new implementation of the conductor-like screening solvation model (COSMO) in the GAUSSIAN94
package is presented. It allows Hartree-Fock (HF), density functional (DF) and post-HF energy, and HF
and DF gradient calculations: the cavities are modeled on the molecular shape, using recently optimized
parameters, and both electrostatic and nonelectrostatic contributions to energies and gradients are considered.
The calculated solvation energies for 19 neutral molecules in water are found in very good agreement with
experimental data; the solvent-induced geometry relaxation is studied for some closed and open shell molecules,
at HF and DF levels. The computational times are very satisfying: the self-consistent energy evaluation
needs a time 15-30% longer than the corresponding procedure in vacuo, whereas the calculation of energy
gradients is only 25% longer than in vacuo for medium size molecules.

1. Introduction

Many chemical reactions of biological and technological
relevance take place in a condensed medium, in particular in
liquid solutions, and often an accurate theoretical treatment of
such processes cannot leave a realistic description of the
environmental effects aside. The recent advances in quantum
calculation techniques are making ab initio calculations possible
on systems of ever-increasing size: thus there is a growing need
of ab initio procedures providing reliable treatments of solute-
solvent interactions.
Among the several approaches proposed to describe the

solvent effect at the ab initio level, continuum models are quite
popular,1-4 due to their flexibility and efficiency. In such
models the solute molecule, possibly supplemented by some
solvent molecules belonging to the first solvation shell, is placed
in a cavity surrounded by a polarizable continuum, whose
reaction field modifies the energy and the properties of the
solute. In the most advanced ab initio models (e.g., PCM,5,6

SCIPCM,7 SCRF,8,9 COSMO,10,11 and GCOSMO12) the cavi-
ties are of molecular shape, and the reaction field is described
in terms of apparent polarization charges or reaction field factors
included in the solute Hamiltonian, so that it is possible to
perform iterative procedures leading to the self-consistence
between the solute wave function and the solvent polarization.
Quantum calculations considering the solvent reaction field are
not limited to monodeterminant wave functions: for example,
Mikkelsen et al.13,14 and Karlstro¨m15 have proposed multicon-
figurational procedures where the solvent is described by a
continuum dielectric.
In addition, some models also describe nonelectrostatic

solute-solvent interactions (which are usually referred to as
cavitation, dispersion, and repulsion energies). Moreover, the
geometry relaxation induced by the solvent on the solute
molecules cannot often be neglected; thus an efficient solvation
model must provide energy gradients and allow geometry
optimizations in solution. In other words, it is desirable that
both direct (i.e., polarization) and indirect (i.e., relaxation)
solvent effects are treated with the same accuracy.
In this work we report the novel implementation in the

package GAUSSIAN9416 of an ab initio solvation model based
on the conductor-like solvation model (COSMO), first proposed

by Klamt and Schu¨ürmann for classical calculations10 and then
extended to quantum mechanical systems.11,12 The present
implementation allows Hartree-Fock (HF), density functional
(DF), and post-HF energy calculations and HF and DF geometry
optimizations in solution; moreover, all the manipulations of
the molecular wave function provided by GAUSSIAN94 for
isolated systems are available for solvated molecules also.

The COSMO approach describes the solvent reaction field
by means of apparent polarization charges distributed on the
cavity surface, which are determined by imposing that the total
electrostatic potential cancels out on the surface. This boundary
condition, suited for cavities in conductor media, can describe
(i) the interaction between molecules and metals (e.g., in the
simulation of electrodic processes) and (ii) the solvation in polar
liquids.

For the latter applications, the conductor-like model is
physically less founded than dielectric models; nevertheless, the
conductor approach is attractive, since its boundary condition
is computationally simpler, especially in the expression of the
energy gradients. Some authors have pointed out that the
conductor model well reproduces the solute energies and
properties obtained with the dielectric approach, using the
dielectric constants characteristic of polar solvents.12,17 Our
results confirm that, using cavity parameters optimized for the
well-known polarizable continuum model (PCM), the COSMO
procedure gives hydration energies in very good agreement with
the experimental results.

The present implementation also provides the nonelectrostatic
contributions to the solute free energy and the first derivatives
of these contributions with respect to the nuclear coordinates:
some examples of geometry optimizations are reported, using
both the electrostatic and the nonelectrostatic terms. To our
knowledge, these are the first examples of complete geometry
optimizations for a conductor model. In fact the derivatives of
the nonelectrostatic solute-solvent energies require an accurate
description of the changes induced on the cavity shape by the
nuclear motion, which is provided by a recently developed
procedure.18 On the other hand, the electrostatic energy
gradients also are improved by considering these geometrical
contributions properly.
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2. Theoretical Background

2.1. Definition of the Cavity. The solute molecules are
embedded in cavities formed by interlocking spheres centered
on the solute atoms or atomic groups. The surface is smoothed
by adding some other spheres, not centered on atoms, to simulate
the so-called solvent-excluding surface, following the GEPOL
procedure.19-21 Then, the cavity surface is partitioned into small
domains, called tesserae, obtained by projecting on the surface
the faces of polyhedra inscribed in each sphere; the tesserae
completely buried into other spheres are discarded, and those
partially cut are replaced by suitable polygons.18

The present implementation exploits the recently developed
PolyGen procedure,22,23 allowing a wide choice of polyhedra,
so that the surface can be covered with finer and finer
tessellations, if needed. A long experience with PCM calcula-
tions indicates that a tessellation using 60 tesserae per sphere
(obtained by projecting the faces of inscribed pentakisdodeca-
hedra) is a reasonable compromise between accuracy and
efficiency; we shall show that this tessellation can be used in
standard COSMO calculations, too. Anyway, it is a good rule
to verify the invariance of the results with respect to this
parameter, at least in test cases.
2.2. Molecular Free Energy. Under the influence of the

solvent, the molecular Hamiltonian is perturbed:

whereĤ 0is the Hamiltonian of the isolated solute; the opera-
tor V̂, describing the electrostatic solute-solvent interactions,
linearly depends on the solute wave function|Ψ〉: in this case,
it has been shown24 that the SCF procedure leads to the
variational minimization of the free energy of the solute,G:

The interaction operatorV̂ is written in terms of apparent
polarization charges: in each tesserai a chargeqi appears,
according to the conductor-like boundary condition:

whereV andVqi are the electrostatic potential due to the solute
and to the polarization charges, respectively, andrb is a point
on the surface. The vector of the conductor-like polarization
charges,Q, can be determined by the equation

where the vectorV contains the electrostatic potential due to
the solute on the tesserae. The elements of the matrixA are

whereSi is the area of tesserai; the expression forAii has been
found by Klamt and Schu¨ürmann in the case of a single sphere
partitioned into a variable number of identical tesserae10 and
also used by Truong and Stefanovich in their own GCOSMO
implementation.12

If the COSMO model is used to simulate a solvent with
dielectric constantε, the polarization charges have to be scaled
so that the total polarization charge will obey the Gauss law:
a very effective way to do this is multiplying each charge by
the factor (ε-1)/ε, so that the actual charges are

In analogy with the boundary element method formulation
of PCM,24 it is convenient to separate the potential due to the
solute nuclei,VN, and that due to the electrons,Ve, defining
two sets of charges:

In a finite basis matrix formulation, the molecular Hamilto-
nian in the presence of the solvent can be written

where

is the Hamiltonian for the isolated molecule, andj , y, X, and
UNN represent the interactions betweenqe and the solute nuclei,
qN and the solute electrons,qe and the electrons, andqN and
the nuclei, respectively. The explicit expressions for these terms
have been presented elsewhere for the PCM model;6 they can
be used in this framework without changes.
The corresponding Fock matrix is

In these terms it is possible to perform an iterative calculation,
formally equal to the usual SCF procedure for isolated mol-
ecules, leading to self-consistent polarization charges and solute
wave function. Notice that both Hartree-Fock and density
functional, as well as hybrid HF-DF, Hamiltonians can be
modified according to eq 10. Moreover, the present imple-
mentation allows us to perform perturbative many-body (MPn),
configuration interaction, and coupled cluster calculations using
the polarization charges determined at the HF level or iterating
the calculation to get a complete self-consistence between the
polarization charges and the post-Hartree-Fock wave function,
following the same procedure illustrated for the PCM method,
e.g., in ref 25.
The total polarization charges appearing on the cavity surface

are subject to Gauss’ law:

whereZn andNe are the atomic number of nucleusn and the
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number of solute electrons, respectively. In practice, the
conditions 14 and 15 are not fulfilled, both for numerical and
for physical reasons: the numerical error arises from the
approximated description of the polarization charge density in
terms of discrete point charges; the physical error is due to the
little amount of solute charge escaping from the cavity because
of the exponential decay of the electronic tails. The numerical
error is present for bothqN andqe, approximately at the same
extent, whereas the escaped charge error, usually heavier than
the former one, affectsqe only. Some methods have been
proposed to correct such effects, both in dielectric26 and in
conductor models;27 however, it is known that the conductor
approach is less sensitive to these sources of error than the
dielectric one, and actually we found that the calculated COSMO
charges for neutral solutes sensibly satisfy eqs 14 and 15 (see
below). Then we deferred the treatment of numerical and
electronic errors to a further work, devoted to ionic solutes.
According to eq 2 the molecular free energy in solution can

be written

where the subscript “es” recalls that we are considering
electrostatic interactions only: for brevity,Vi indicates the value
of the electrostatic potential on the tesserai.
Recalling eqs 4 and 7, the solute potential at tesserai can be

related to the set of polarization charges

and∆Ges can be put in an equivalent form,

that will be useful in the formulation of energy gradients.
Taking into account the nonelectrostatic interactions, the

solute free energy becomes

The free energy associated with the formation of the cavity
in the continuum medium,Gcav, is calculated with the expression
derived by Pierotti from the hard sphere theory,28 adapted to
the case of nonspherical cavities.25 The dispersion and repulsion
terms,Gdis, Grep, are calculated following Floris and Tomasi’s
procedure,29,30 with the parameters proposed by Caillet and
Claverie;31 the implementation details are described in ref 18.
Clearly the nonelectrostatic terms are exactly the same in the
PCM and the COSMO models, provided equal cavities are
employed.
2.3. Free Energy Derivatives.The free energy derivatives

can be written

where the superscriptR indicates the partial derivative with
respect to the nuclear coordinateR.
The expressions for the derivatives of the nonelectrostatic

terms have been given elsewhere;18,32as said in the Introduction,

they heavily depend on the derivatives of the tesserae geo-
metrical elements (area, position of the vertices), which are
neglected, totally or in part, in the preceding COSMO imple-
mentations.10,11,33

The derivative of the electrostatic contribution is

[〈Ψ|Ĥ 0|Ψ〉]R is the usual energy derivative calculated by
standard programs; from eq 19 we have

Recalling eq 18, the terms depending on the derivatives of
the polarization charges cancel out, leaving

This expression for∆G es
R is computationally very efficient,

since it doesn’t require the calculation of charge derivatives:
notice that in dielectric models an analogous expression does
not exist.
The free energy derivatives (eq 21) can be used in standard

optimization procedures (e.g., the Berny algorithm implemented
in GAUSSIAN94, used throughout this work), in order to
calculate the solvent-induced molecular relaxation.

3. Computational Details

The calculations were performed at the HF, MP2, and density
functional levels; for the latter we resorted to the hybrid B3LYP
functional, which combines HF and Becke34 exchange terms
with the Lee-Yang-Parr correlation functional;35 the 6-31G-
(d) and 6-311+G(d,p) basis sets were used.
The solvent was water at 25°C, with dielectric constantε )

78.4.
The molecular cavities were built following the UAHF (united

atom for Hartree-Fock) procedure,36 recently developed by our
group for the PCM program. For the sake of clarity, we briefly
resume the UAHF rules for the molecules considered in the
present paper.
(1) Hydrogens don’t have individual spheres; they are

included in the same sphere of the heavy atom they are bonded
to.
(2) The second-row atoms radii,R(X)’s, depend on the

molecular environment according to

whereγ ) 0.18 Å for carbon and 0.09 Å for the other atoms;
nH is the number of bonded hydrogens,nact is the number of
bonded “active” atoms (“active” means having the same atomic
number and the same hybridization state as X), andδsp2 is 1 if
X is in the sp2 hybridization state and 0 otherwise, and
analogously forδsp.
(3) A further correction based on the number of substituents

is applied to sp3 carbons:

where CX indicates a substituted sp3 carbon.
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The above rules have been coded in a routine implemented
in GAUSSlAN9436 that automatically assigns the proper atomic
and group radii. The UAHF cavities allow one to calculate
PCM solvation energies at the HF level in excellent agreement
with the experimental results; we shall show that they are
suitable for COSMO calculations, too.

4. Results and Discussion

In Table 1 we report the experimental and calculated solvation
free energies for 19 neutral molecules; the calculations have
been performed with the COSMO model at the HF, MP2, and
B3LYP levels. The MP2 energies have been obtained using
the polarization charges determined at the HF level; this
procedure gives a good approximation of the completely self-
consistent calculation in the solvent.38

The good agreement between HF/6-31G(d) and experimental
energies clearly shows that the UAHF cavity model, though
developed for PCM calculations, can be satisfactorily used in
the COSMO framework, too. We recall however that in the
present implementation other commonly used atomic radii sets
(e.g., Pauling’s39 and Bondi’s40 ones) can be selected by simply
assigning a keyword the proper value. MP2 and B3LYP results
listed in Table 1 are less accurate than HF ones, although the
mean errors are quite small in any case. In fact it is well-known
that correlated methods usually yield smaller calculated dipole
moments, and since the size of the cavities is optimized for HF
wave functions, the solvent reaction field is underestimated at
the MP2 and DF levels: suitable united atom cavity models
for DF and post-HF calculations are in preparation. On the
other hand, both dipole moments and polarizabilities are usually
larger when calculated with extended basis sets, and solvation
energies are overestimated at the HF/6-311+G(d,p) level,
although the errors remain small.
The magnitude of the numerical error, due to the discretization

of the polarization charge density in a finite number of point
charges, can be reduced by increasing the number of surface
tesserae. In Table 1 we report COSMO solvation energies
calculated at the HF level with different surface tessellations:
it is apparent that the results are remarkably stable with respect
to this parameter, so that the default value of 60 tesserae per
sphere has been selected in all the calculations.
In Table 2 we report the difference between the total

polarization charges induced by solute nuclei,∑i qi
N, and by

electrons,∑i qi
e, and the values predicted by Gauss law, eqs 14

and 15, recalling that the discrepancy between∑ qi
N and

qGauss
N is another measure of the discretization error, whereas
the disagreement between∑ qi

e andqGauss
e depends both on the

discretization and on the error due to the electronic tails escaped
from the cavity.
The results listed in Table 2 confirm that the discretization

error is very small, and show that the electronic error too is not

TABLE 1: Experimental and COSMO Solvation Free
Energies (kcal/mol). HF Calculations Have Been Repeated
with Different Tessellations of the Cavity Surface; Basis Set
6-31G(d), Unless Otherwise Noted

HF

tesserae per sphere: expt 60 180 360 60a
MP2
60

B3LYP
60

CH4 2.0 1.86 1.85 1.85 1.84 1.85 1.86
CH3CH3 1.8 1.96 1.95 1.95 1.93 1.95 1.96
H2O -6.3 -6.26 -6.30 -6.27 -6.68 -6.10 -5.53
CH3OH -5.1 -5.04 -5.15 -5.14 -5.52 -4.82 -4.36
CH3OCH3 -1.9 -2.13 -2.16 -2.16 -2.54 -1.85 -1.53
n-C4H9OH -4.7 -4.46 -4.56 -4.55 -4.97 -4.23 -3.78
CH2OH-CH2OH -9.6 -9.91 -9.99 -9.95 -10.76 -9.09 -8.57
NH3 -4.3 -4.32 -4.35 -4.34 -4.49 -4.32 -3.98
CH3NH2 -4.6 -4.68 -4.81 -4.79 -4.98 -4.67 -4.31
(CH3)2NH -4.3 -4.33 -4.41 -4.41 -4.76 -4.30 -3.94
(CH3)3N -3.2 -2.79 -2.86 -2.88 -3.15 -2.74 -2.40
H2CO -1.7 -1.75 -1.77 -1.76 -2.36 -0.41 -0.44
CH3CHO -3.5 -3.53 -3.56 -3.56 -4.31 -2.00 -2.17
CH3COCH3 -3.8 -3.65 -3.71 -3.70 -4.47 -2.26 -2.49
HCN -3.2 -3.07 -3.07 -3.06 -3.30 -2.15 -2.05
CH3CN -3.9 -3.63 -3.66 -3.65 -4.05 -2.77 -2.92
CH3COOH -6.7 -7.01 -7.02 -7.02 -7.77 -5.85 -5.75
CH3COOCH3 -3.3 -3.44 -3.49 -3.46 -3.97 -2.38 -2.43
CH3CONH2 -9.7 -9.33 -9.47 -9.42 -10.34 -7.90 -7.78
mean unsigned error 0.17 0.17 0.17 0.46 0.65 0.82
max error 0.41 0.39 0.35 1.16 1.80 1.83

a Basis set 6-311+G(d,p).

TABLE 3: Optimized Geometry (Bond Lengths in Å, Angles in deg), Dipole Moment (D), and Free Energies (hartrees) in
Vacuo and in Solution for Two Acetic Acid Conformers (See Figure 2) Calculated at the B3LYP Level with the 6-31G(d) and
6-311+G(d,p) Basis Sets

syn conformer anti conformer

6-31G(d) 6-311+G(d,p) 6-31G(d) 6-311+G(d,p)

in
vacuo

in water
(COSMO)

in
vacuo

in water
(COSMO)

in
vacuo

in water
(COSMO)

in
vacuo

in water
(COSMO)

R(C-C) 1.509 1.504 1.504 1.498 1.520 1.517 1.516 1.508
R(C-Ht) 1.090 1.091 1.088 1.089 1.090 1.092 1.087 1.089
R(C-Hg) 1.095 1.096 1.092 1.094 1.097 1.097 1.093 1.094
R(CdO) 1.210 1.215 1.205 1.213 1.203 1.218 1.196 1.208
R(C-O) 1.359 1.348 1.359 1.341 1.365 1.359 1.364 1.352
R(O-H) 0.976 0.988 0.969 0.986 0.971 0.986 0 963 0.981
∠CCHt 106.54 109.83 109.56 110.17 109.27 109.88 109.30 109.88
∠CCHg 110.00 110.01 109.84 109.75 110.70 110.17 110.47 110.59
∠CCdO 126.23 125.96 126.15 125.76 124.86 124.00 124.91 123.75
∠CC-O 111.35 112.03 111.53 112.63 115.20 114.59 115.31 116.64
∠COH 105.92 107.49 107.08 109.27 110.11 110.84 110.86 111.14
∠HgCCO 121.00 120.95 121.04 121.10 120.22 120.72 120.23 120.45
dipole moment 1.58 2.03 1.74 2.34 4.30 5.90 4.57 6.06
energy -229.081 78 -229.091 40 -229.164 72 -229.163 99 -229.071 91 -229.088 76 -229.155 30 -229.172 00

TABLE 2: Errors on Nuclear and Electronic Total Polar-
ization Charges with Respect to Gauss’ Law. Calculations
at the HF/6-31G(d) Level with 60 Tesserae per Sphere

error
on nuclear
charge

error on
electronic
charge

error on
nuclear
charge

error on
electronic
charge

CH4 0.0009 0.0030 (CH3)3N 0.0110 0.0251
CH3CH3 0.0163 0.0188 H2CO 0.0169 0.0193
H2O 0.0008 0.0028 CH3CHO 0.0081 0.0133
CH3OH 0.0077 0.0129 CH3COCH3 0.0297 0.0356
CH3OCH3 0.0062 0.0123 HCN 0.0130 0.0154
n-C4H9OH 0.0399 0.0473 CH3CN 0.0134 0.0173
CH2OH-CH2OH 0.0233 0.0355 CH3COOH 0.0099 0.0148
NH3 0.0010 0.0052 CH3COOCH3 0.0127 0.0188
CH3NH2 0.0099 0.0199 CH3CONH2 0.0135 0.0197
(CH3)2NH 0.0035 0.0162
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serious for neutral solutes with this kind of cavity, thus justifying
the use ofqN andqe as derived from eqs 8 and 9, without further
corrections.
The effects of the geometry reoptimization in water on some

molecules at the HF level are shown in Figure l: the COSMO
calculations of the free energy gradient, including the derivatives
of the nonelectrostatic energies, led the optimization procedure
to converge in all the presented cases without particular
problems: note that the convergence thresholds were the same
as in usual GAUSSIAN94 calculations for isolated molecules
(convergence thresholds: 0.00045 au for the maximum force,
0.0003 au for the mean force, 0.0018 au for the maximum
predicted displacement, and 0.0012 au for the mean displace-
ment).
As one could expect, the solvent effect on the geometry

relaxation becomes more important when ionic resonance
structures are present (e.g., in acetamide) and in H-bonded
complexes. We stress that in these geometry optimizations the

expression 21 for the energy derivatives was used; for the first
time, the complete derivatives of tesserae area and shape were
taken into account in the COSMO framework, allowing the
calculation of nonelectrostatic energy derivatives and improving
the electrostatic energy derivatives, too.
Next we considered the effect of the solvation on the

structures and the energy gap between the two conformers of
acetic acid illustrated in Figure 2.
In Table 3 we show the effect of the reoptimization in water

on the structure and the free energy of both conformers,
calculated at the B3LYP/6-311G+(d,p) level; in Table 4 the
energy difference between the syn and the anti conformers
calculated at different levels (with 6-311G+(d,p) basis set) in
vacuo and in solution is reported.
From the data in Table 3, one can see that in the isolated

molecules some geometrical parameters are quite dependent on
the quality of basis set, whereas such dependence is less
pronounced for the solvent-induced rearrangements.
The conformational energy difference in vacuo calculated at

the QCISD level is 5.85 kcal/mol, exactly as the best value
previously obtained by MP3/6-311+G(d,p) calculations,37whereas
Andzelm et al.11 obtained 5.1 and 4.8 kcal/mol using a local
density functional and a gradient-corrected (BP) functional,
respectively; thus, our B3LYP result in vacuo (5.91 kcal/mol)

Figure 1. Geometrical parameters optimized in vacuo and in solution
at the HF/6-31G(d) level for some molecules.

Figure 2. Acetic acid conformers.

TABLE 4: Energy Differences (kcal/mol) between the Syn
and Anti Acetic Acid Conformers, Calculated with the
6-311+G(d,p) Basis Set
level of the
calculation

E(syn) - E(anti)
in vacuo

G(syn) - G(anti)
in water

∆Gsolv(syn) -
∆Gsolv(anti)

HFa 6.70 2.39 -4.31
MP2b 6.03 2.55 -3.48
MP4b 5.83
QCISDb 5.85
B3LYPc 5.91 2.33 -3.52
B3LYPd 2.19 -3.72
aGeometries optimized in vacuo at the HF/6-311+G(d,p) level.

bGeometries optimized in vacuo at the MP2/6-311+G(d,p) level.
cGeometries optimized in vacuo at the B3LYP/6-311+G(d,p) level.
dGeometries optimized in water at the B3LYP/6-311+G(d,p) level.

Figure 3. Bond angle and out-of-plane angle for the H2NO radical.

TABLE 5: Equilibrium and Planar Geometries (Bond
Lengths in Å, Angles in deg) Optimized in Vacuo and in
Solution for H2NO (See Figure 3) at the UB3LYP/
6-311G(d,p) Level

equilibrium planar (saddle point)

in vacuo in water in vacuo in water

R(N-H) 1.018 1.024 1.016 1.024
R(NdO) 1.277 1.279 1.275 1.279
R 59.11 59.6 59.72 59.86
θ 17.39 9.88 0.0 0.0

TABLE 6: Vibrational Frequencies (cm-1) Calculated at the
UB3LYP/6-311G(d,p) Level for Planar H2NO in Vacuo and
in Solution

vib mode in vacuo in water

a1 3421.9 3290.5
a1 1681.7 1655.5
a1 1389.5 1394.7
b2 3548.2 3425.9
b2 1271.4 1267.6
b1 227.0i 148.4i
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is quite satisfactory. At the B3LYP/6-311+G(d,p) level the
syn-anti energy difference in water is 2.33 kcal/mol with the
geometries optimized in vacuo and 2.19 kcal/mol after reopti-
mization in solution; that is, the solvent stabilizes the anti
conformer with respect to the syn form by 3.72 kcal/mol. This
value is in quite good agreement with the results obtained,
without geometry reoptimization, by Andzelm et al.11with their
own COSMO implementation that yielded a stabilization of 3.3
kcal/mol using their local functional and 3.1 kcal/mol using the
BP functional.
To test the COSMO procedure on open shell systems, we

optimized the geometry of H2NO in vacuo and in water at the
UB3LYP/6-311G(d,p) level; the results for both the equilibrium
bent structure and the saddle point planar structure (see Figure
3) are summarized in Table 5. This system has been widely
studied by many groups, since it is representative of a class of

relatively stable radicals that have been experimentally char-
acterized in many liquid media.
Vibrational frequencies for the planar structure are reported

in Table 6; we find an imaginary frequency corresponding to
the out-of-plane bending of hydrogens, confirming that this
structure is a saddle point both in vacuo and in solution.
COSMO frequencies have been obtained numerically, since the
implementation of analytic energy second derivatives in this
framework is still in progress.
Then, in Table 7 we compare the solvent effects due to the

direct solute polarization to the effects induced by the geometry
rearrangement on the SCF energies and the isotropic hyperfine
spin coupling constants (hcc) of H2NO. The hcc’s are widely
used in electron spin resonance spectroscopy to investigate the
structure of radical moieties; they linearly depend on the spin
density on the nuclei and can be effectively calculated in
condensed phase by a procedure recently developed for the PCM
approach,41 used here for the first time in the COSMO
framework.
The solvent induces noticeable geometry rearrangements in

this system, in particular that referred to the out-of-plane angle
in the bent structure. It is noteworthy that this geometrical
change has a negligible effect on the energy of H2NO in water;
nevertheless it heavily affects the value of electronic properties
like the isotropic spin coupling constants.
The strong dependence of the calculated quantities on the

geometry suggests that vibrational averaging can improve the
results sensibly. Following a computational scheme recently
applied to other free radicals in solution,42we considered a single
motion defined as the linear synchronous path joining the
minimum and the saddle point; the vibrational coordinate is
defined as the arc length along this path in mass-weighted
Cartesian coordinates. The hcc’s for a number of structures
along this path were calculated at the UB3LYP/6-311G(d,p)
level and averaged over the first 10 vibrational states at 298 K
by the program DiNa;43 the results are shown in Table 8.
A last comment is in order about the CPU times required by

COSMO energy and gradient calculations, compared to the
corresponding timings for isolated molecules. As shown in
Figure 4a, the time needed for a SCF calculation is about 30%
longer in solution than in vacuo for small solutes and only∼15%
longer in the case of larger systems. Notice that both in solution
and in vacuo the SCF calculations used the same initial guess
(i.e., an INDO wave function, according to GAUSSIAN94
default options); starting from the wave function converged in
vacuo, the SCF procedure in solution is even faster. On the

TABLE 7: Molecular Energies (hartrees) and Isotropic Hyperfine Coupling Constants (G) for H2NO in Vacuo and in Solution
Calculated at the UB3LYP/6-311G(d,p) Level

equilibrium planar

in
vacuo

in water at the geometry
optimized in vacuo

in water at the geometry
optimized in water

in
vacuo

in water at the geometry
optimized in vacuo

in water at the geometry
optimized in water

energy -131.129 763 -131.142 477 -131.142 639 -131.129 709 -131.142 506 -131.142 658
a(N) 6.69 8.01 5.97 4.19 5.12 5.22
a(H) -10.19 -10.13 -13.93 -13.97 -15.22 -15.20
a(O) -11.44 -11.25 -11.23 -11.42 -11.24 -11.22

Figure 4. CPU times (on an IBM Rise 6000/560) for energy and
gradient calculations in vacuo and in solution.

TABLE 8: Vibrational Average (at 298 K) of Out-of-Plane
Angle (θ in Figure 3, in deg), hcc’s (G), and Dipole Moment
(D) for H 2NO in Vacuo and in Solution Calculated at the
UB3LYP/6-311+G(d,p) Level

in vacuo in water

(〈θ2〉298)1/2 18.8 18.3
〈a(N)〉298 6.9 7.2
〈a(H)〉298 -9.8 -10.9
〈µ〉298 3.03 3.83
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other hand, the calculation of the energy gradients in solution
requires less than twice the time needed for isolated molecules;
for large solutes, the calculation in solution is only∼25% longer
than that in vacuo (see Figure 4b).

5. Conclusions

We have presented a new implementation of an effective and
reliable conductor-like continuum solvation model. Both energy
and gradient calculations can be performed at the HF and DF
levels; with a suitable choice of cavity sizes, a remarkably good
agreement between calculated and experimental solvation ener-
gies can be obtained. Many examples show that the possibility
to reoptimize molecular geometries taking the solvent effect into
account sensibly improves the quality of the description of
energies and electronic properties of systems in solution.
The model will be soon extended by including the analytical

calculation of energy second derivatives, which presently can
be computed by numerical procedures. The limited computa-
tional weight required by the calculation of the solvent contribu-
tions to energies and gradients makes it possible to apply this
procedure also to large systems.
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